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ABSTRACT

The instantaneous impact point (IIP) corresponding to
a given set of thrust cut-off conditions 1s analyzed. Analytical
solutions are obtained for various 1mpact parameters. Several
graphical solutions are formulated for the purpose of generating
such information for mission planning purposes. A new form of

graph paper with trigonometric scales is introduced.
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MEMORANDUM FOR FILE

Prediction of the flight profile of a mission in case of
thrust failure prior to attainment of orbltal speed is of impor-
tance to range safety considerations. Misslon planners require
such information as the locl of sub-vehlcular points (Ground Track)
as well as the instantaneous impact point (IIP Trace)

When the trajectory of a proposed mission is actually
simulated on a computer,¥ it 1s feasible to incorporate a routine
that will yield the instantaneous impact point resulting from the
premature termination of thrust at a given point during a powered
phase of the flight. On the other hand, if a parametric study is
to be conducted in order to establish some guldelines in tradeoffs
between performance and range safety, it would be desirable to

generate such information quickly without having to resort to the
computer.

The purpose of this paper is to present graphical data
based on analytical formulae derived for this purpose and to
suggest a few examples where such data may be used with advantage.
A ballistic model has been used for simplicity and the effect of
earth's rotation has been neglected.

The range angle, i.e., the geo-central angle subtended
by the vehicle position vectors at cut-off and impact respectively,
is given by the following:¥#¥

Impact

R [arc cos F—EL:;jL~f (1)
YL - B cut-off
where
A8 = Range Angle
(2)
£ = v2 cos2 Y

%¥For example, the Bellcomm Apollo Simulation Program (ASP).

¥*Formulae used in thls paper are derived in the Appendix.
Definitlions of terms are grouped under section entitled
"Nomenclature™ at the end of paper.
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n=2-=-v (3)

energy index

<
il

cut-off velocity
circular velocity at cut-off altitude

Y flight path angle relative to local horizon.

In order to apply Equation (1), the variables &, n are computed
at cut-off point, using the cut-off velocity, altitude and flight

path angle. The values of these same variables at the point of
impact are computed directly from the following relationships:

£ = 0k (4)

ny LI (5)

where the subscripts 1 and co denote impact and cut-off
respectively, and

o = co (6)

r being the magnitude of the position vector..

By virtue of Lambert's theorem, the impact time nor-
malized with respect to the circular period at cut-off altitude
is given by the following approximation:

t 1 .
2n b = (a - sina) - (8 - sing)] (7)
Teo n3/2 [
where
TCO = circular period at cut-off altitude
o _ n . Aeﬁ
sin 3 —'\/2 (1 + sin §—) (8)
B _ n AB
»sing—‘\/2 (1 - sin 5= ) (9)
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The approximation 1s valid when the cut-off altitude above ground
is small as compared to the magnitude of the position vector. The
effect of a finite altitude at cut-off may be accounted for with a
correction in the values of the variables n and A8 as follows:

A}

—l'V&+p2-2pcos AB

§(a0) = 2 sin T+, Y (10)
n 0
§(n) = i (L +p) = (11)
2 0
m—}—en
2
where
_Teo T Yoo
€—
r
00

The latitude and longitude of the instantaneous impact
point are related to those of the sub-vehlcular point at cut-off
by the following formulae:

sin Li = sin Lco cos(a8) + cos Lco sin(Aa8) cos Bco (12)

sin(Aa8) sin Bco

sin (Ai—xco)= cos I ‘ (13)

where

L = latitude
A = longitude

B = azimuthal angle

and A6 and the subscripts 1 and co retain their definitions as
before. Derivations of the above formulae are included in the
Appendix.
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Method of Solution

In this paper, graphical solutions are proposed for the

problems formulated above. These solutions have been devised for
the purpose of obtalning answers rapidly and with an accuracy use-
ful for mission planning purposes.

1.

Solution to the Range Angle Problem - Consider the de-
nominator in the argument of the lnverse cosine function
in Equation (1). It is obvious from Equations (4) and
(5) that this quantity remains constant for both the
cut-off and the impact points. On a graph paper with
polar coordinates, an arc is drawn with radius equal to

vl-¢n . Along any radius, mark off quantities equal to
(g-1) and (p&-1) respectively, from the origin and draw
straight lines at these points perpendicular to the
radius chosen, intersecting the arc at two points. Radii
joining the origin to these points enclose the range
angle. As an example, the followlng is given:

v002 = 0.7

Yeo © 20°

p = 1.1

We obtain:

£ = 0.615

n=1.3
VI-gn = 0.447
g-1 = -0.385
pg-1 = -0.324

The proposed graphical solution 1s shown in Figure 5
and the range angle is obtained to be 13°. Note that
in accordance wlth the sign of the quantities (g-1)
and (p&g-1), the radius corresponding to &=m has been
chosen. In this manner, the solution yields not only
the range angle, but also the true anomalies. When p
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1s near unity, that i1s when the altitude at cut-off

is exceedingly small, it will be difficult to realize
a satisfactory resolution between the quantities (g-1)
and (p&-1l) in a convenient graphical solution. 1In
this case, the well known simplified solution corre-
sponding to a flat earth should perhaps suffice.

Solution to the Impact Time Problem - Equations (8)
and (9) yield the following expressions:

= 2 a 2 B
n = sin 5 + sin 5 (14)
sin2 2. sin2 8
. A® _ 2 2
Sin 2 2 a 2 B (15)
sin 5 + sin 5

Consequently if sin% and sin% are chosen as coordinates,
Equation (14) is that for a circle of radius vn while
Equation (15) represents families of straight lines in
the real plane with slopes of

/ 1 - sin(Ae/Zf
t N 1 + sin(ae/2)

For = > o« > B > 0, only the positive quadrant 1is chosen.
Thus, to a set of values of n and A6, there correspond a
circle and a straight line. Thelr intersection determines
%. Solution to Equation (7)

is obtalned readily with the aild of linear scale and a

sine scale. This is illustrated in Figure 6. The readings
on the abscissa are doubled and transferred to the

scales for the solution to the impact time

problem.

the values of sin% and sin

Solution (1) and (2) render it desirable to work
with the variables ¢ and n introduced in this paper.

Solution to the IIP Problem - The purpose of the construc-
tions shown in Figures 2,3, and 4 is three fold, viz:

(1) to determine the instantaneous impact point for a set
of cut-off conditions, (ii) to studz the effect of a yaw
program on the IIP trace and (1ii) to introduce the use

of a Trigonometric Paper to solve transcendental equations.
Equation (12) shows that if the abscissa and ordinate are
scaled according to the cosine and sine functions respec-
tively, then for a given set of cut-off conditions, viz:
(1) the latitude of the cut-off point and (ii) the range
angle as obtained above, then the equation for the impact
point is a straight line in terms of the azimuthal angle.
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This line 1is easily determined by considering the value
of Li for Bco=o and Bco=n respectively.

sin Li 31n(Lco+Ae) for BCO=O

sin Li 31n(LCO-Ae) for Bco=n

In order to study the longitude of the impact point, we
note that Equation (13) may be written as:

2
sin- A6 .2 _
————— + sin Li =1 (16)
K
where
sin(i,-x__)
_ i “co
= sin B8 (17)
co

Equation (16) is that of an ellipse, while Equation (17)
is a straight line. These are plotted in Figure 3 for
various values of «. The impact point longitude may
thus be quickly determined by entering Figure 3 with the
range angle and the impact latitude determined earlier
and locating the ellipse on which this point lies. The
Kk — value of the ellipse is then used to locate the
straight line which shows the dependence of the impact
longitude on a yaw program. Figure 4 shows two such

cases.
Tuela /57
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Nomenclature

a Semi-major axils of ellipse

c Chord Jjoining two points on ellipse

e Eccentricity

L Latitude

r Focal radius

s Semi-perimeter defined in Eq. (A-12')
t Time elapsed between two points on ellipse
I Period

v Veloclty

o Variable defined in Eq. (A-l2')

g Variable defined in Eq. (A-12 )

Y Flight path angle

€ Error

n Variable defined in Eq. (3)

] True anomaly

K Parameter defined in Eq. (17)

A Longitude

u Gravitational constant

v Energy index defined in Eq. (A-3)

g Variable defined in Egq. (2)

P Ratio of focal radii defined in Eq. (6)
Subscripts: co : Cut-off

i : Impact
oo : Used to designate average earth radilus.




BELLCOMM, INC.

APPENDIX

1. Impact Range Angle - After cut-off the vehicle is assumed to
follow an elliptic trajectory, thus neglecting the effect of
atmospheric drag.* The magnitude of velocity is:

e _ 21
Vo= g 3 (A-1)
The flight path angle is:
cos y = iﬂéﬁ%&f_l. (A=2)
2 v2
Solving for e between (A-1) and (A-2) and letting v° = Welk
one obtains
[
e = Nfl - v2(2—v2) cos? Y (A=3)
The true anomaly is given by:
2
_a(l-e®) - r
cos 6 = o7 (A-4)
Noting Equations (A-2) and (A-3), (A-4) may be written as:
2 2
cos 6 = v cos y -1 ]
'V& - (2-v2)v2 coszy
= & =1 (A-5)
V1 - &n
where
E = v2 0082 Y
n =2 - v2

5 From Equation (A-1), it follows that the energy index
v" may vary between 0 and 2. The impact range angle may be
evaluated from Equation (A-5) by computing the values of & and n,
and consequently the true anomalies at cut-off and impact and
taking the difference. These are known at the cut-off point. At
the impact point, it 1is required that the radius vector equals the
earth's radius roo Thus,

2 1)

r a

(A-6)

¥See Sec. 4 for a discussion of this effect,
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Subtracting from 1t the velocity squared at cut-off point,

2 2 1 1
v = v + 2y =—/—/— - — (A=-T7)
i co Too oo
It follows, therefore, that
2 _ 2 Yoo T50
\)i = \)CO r—-+ 2(1 —r—' (A-8)
co co
and,
=1
L] 0 Neo
where
r
o = —cO
Too
From Equation (A-2), 1t follows that
rve cos? Yy = a(l—ez) (A-9)

Since the right hand side is constant for a given ellipse, one
may write

2. Time of Impact - Let the impact range angle evaluated with
the help of Equations (A-5), (A-8), and (A-10) be denoted by as®.
The length of the chord joining the cut-off and the impact points
is then

i
_ 2
c = roo‘w/l + p7 - 2p cos(A8) (A-11)

Applying Lambert's Theorem, the time interval between cut-off and
impact is given by:

Yut = Va3 [(a - s8in a) - (B - sin B)] (A-12)
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where,
o _~/5_
sin 5 = 5a
B _ s—c !
sin 5 = 5 (A-12 )
2s = + +
00 co
a =r1r/n
Substituting Equation (A-11) for the value of c,
.. 2 0 _ 8 _ Neo 2 ']
S1ln 5 = Z = rp—- [l + o) +-\/l+p —2p cos A8 (A—l3)
2 n — N
.2 B _ s-c _ _co _-/ _ i
sin” 3 5 E;—[-l + 0 1+p =-2p cos Aej (A-14)

When the altitude at cut-off is neglected,
Equations (A-13) and (A-14) simplify to:

CcO

. AD
(1 + sin 5
(l - sin A

“l

p becomes unity and

(A-15)

(A-16)

In order to account for the effect of the altitude, the values
from oo and A8 must be corrected.

corrections.
+
Neo 6”co
2
- ncor
T |

{l + sin

(A8 + §40)

Let Gnco and 6(A8) be such
Then Equation (A-13) through (A-16) demand,

] .

1+ p +w/1+p2—2p cos A

‘ -

j (A-17)
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n + 6n
co co [1 _ gin (A6 + sae) |_
2 | 2
Nco WJ 2 -
= W [l + p ~Y1+p -2p cos AS (A-18)

Solving for (nco + GACO) and (46 + §(Ae8)), the corrected values
of these variables become

_ 1 Neo
Neo + Gnco =3 5 (1L + p) (A-19)

1

sin

A8 + 8A6 | _ 'V& + 02 - 2p cos A® (A-20)
2 1 + p B

The normalized impact time is obtained from Equation (A-12) as
follows:

t 1
2m = (¢ = sin a) - (B - sin B) (A-21)
Tco n3/2 [

It is to be noted that if the corrected values in Equation (A-19)
and (A-20) are to be used for n and A8, then the impact time
computed according to Equation (A-21) must be multiplied by

[(1+ 0)/20]32.

As a further simplification, if the altitude is small
such that p may be replaced by (l+e) , then a first order
approximation yields,

1
6]’]00 N - § €N (A—22)

§(a8) ~ O (A-23)
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for small A6 while the resultant impact time from Equation (A-21)
will have to be multiplied by (1 - % e’. In case A6 approaches m,

then Equation (A-23) must be modified by taking second order terms
into account:

1 2 AB
s§(a8) v - T e tan 5 (A-24)
3. Instantaneous Impact Point - The position of the instantaneous

impact point is determined by solving the spherical triangle in
Figure 1. Thus,

sin Li = sin LCO cos(A8) + cos LCO sin(ae) cos Bco (A-25)

where Bco is the azimuthal angle at cut-off. Also, the law of

sines yields,

cos LCO _ _sin(ae) ) cos Li (A-26)
sin B, 51n(Ai—A057 sin 8,
Solving for sin(Ai—ACO), the following is obtained,
sin (A6) sin Beo
sin(i;-x ) = (A-27)

o) cos L.
i

where Li has been determined by Equation (A-26).

4, Effect of Atmospheric Drag - The atmospheric drag will reduce
the Impact Range Angle by an amount depending on the vehicle ballis-
tic number, atmospheric data and cut-off conditions. This reduction
has been estimated by comparing the ballistic results of the given
method to those of integrated trajectories using the ICAO atmospheric
data and a ballistic number of 0.32 ft/slug. The energy index used
range from v=0.7 to v=0.95 with flight path angles of 0°, 5° and 10°
respectively. The comparison shows that the ballistic result over-
estimates the range angle by approximately 10 n.m. or 5% (v=0.7,
y=10°) to 200 n.m. or 20% (v=0.9, y=0°). These deviations may be
compared with the range of a standard landing zone.
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